Q	Question		Answer	Marks	Guidance
1	(a)		 Any <u>two</u> from: Can travel in a vacuum Travel at the speed of light / c / 3 × 10⁸ m s⁻¹ in vacuum No charge / no (rest) mass (Highly) ionising 	B1 × 2	Not: EM radiation / wave because not <i>particulate</i> nature Not: Short wavelength or high frequency Not: High energy photons Not: reflect / refract / diffract
	(b)		$\frac{hc}{\lambda} \text{ and } E = mc^{2}$ $\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda} = 2 \times 9.11 \times 10^{-31} \times (3.0 \times 10^{8})^{2}$ wavelength = 1.2×10^{-12} (m)	C1 C1 A1	Allow: $\frac{hc}{\lambda}$ and 1.02 MeV or 0.51 MeV for this first C1 mark Allow: Correct use of mass = 0.00055 u Allow: 2 marks for 2.4×10^{-12} (m) for omitting factor of 2 Note: Using the de Broglie equation with $v = c$, also gives an answer of 2.4×10^{-12} (m); this scores zero – see below: $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.0 \times 10^8} = 2.4 \times 10^{-12}$ m scores zero
	(c)		Barium / iodine (Contrast medium absorbs X-rays because it) has large attenuation coefficient / has large absorption coefficient / has large Z values Ideal for imaging the <u>outline</u> (of soft tissues)	B1 B1 B1	Not: X-rays are (easily) absorbed by the contrast material Allow: If there is a hole then the barium shows this up by flowing out / Barium is used to find blockage with explanation
			Total	8	

G	uestion	Answer	Marks	Guidance
2	(a)	Rate of decay / disintegration of <u>nuclei</u> or Number of γ (photons) emitted per unit time	B1	The question has 500 Bq. Hence allow the following: Number of <u>nuclei</u> decaying per second / number of γ (photons) emitted per second Not : Rate of decay of atoms / molecules / particles
	(b)	(rate of energy =) $500 \times 10^6 \times 2.2 \times 10^{-14}$ rate of energy emission = 1.1×10^{-5} (J s ⁻¹)	C1 A1	
	(c)	Collimator / lead tubes and gamma (ray photons) travel along the axis of lead tubes (AW) Scintillator / Sodium lodide (crystal) and gamma ray / gamma photon produces (many) photons of (visible) light	B1 B1	Not 'it collimates' Allow : parallel rays / uni-directional rays travel along the lead tubes (AW)
		 Photomultiplier (tubes) / photocathode and dynodes and (electrical) pulse / signal / electrons produced by photon(s) of visible light Computer and signals / pulses /electrons (from photomultiplier tubes) are used to generate an image QWC: Quality of image improved by narrower / thinner / longer collimators OR longer scanning time 	B1 B1 B1	Not 'information / data' in place of signals
		Total	8	

Q	Question		Answer	Marks	Guidance
3	(a)		Longitudinal (wave) Frequency (sound) ≥ 20 <u>kHz</u>	B1 B1	Allow: high frequency (sound) that cannot be heard Allow any value of frequency $\geq 20 \frac{\text{kHz}}{\text{Not}}$: It is non-ionising
	(b)		Emission: (Piezoelectric film / crystal connected to an) <u>alternating</u> e.m.f / p.d / current making it vibrate / contract and expand / resonate (and hence emits ultrasound) (AW) Reception: (Ultrasound makes the piezoelectric film / crystal) vibrate / contract and expand / resonate and this produces (alternating) e m f / p.d / current (AW)	B1 B1	Note : The alternating p.d. can be implied by the term <i>frequency</i> Not varying p.d.
	(c)		Without the gel, the ultrasound would be reflected (at the skin /air interface) or The gel allows (maximum) transmission of ultrasound (into the body)Gel and skin has similar acoustic impedance / Z (values) or There is a large difference between the Z (values) of air and skin	B1 B1	Allow: Gel is used for impedance matching
	(d)		Transducer placed at an angle to the artery / arm Ultrasound (pulses) are reflected by (moving) blood (cells) The frequency / wavelength (of ultrasound) is changed Change in frequency is related to the speed (of blood) or change in wavelength is related to the speed	B1 B1 B1 B1	Allow: The wavelength / frequency is Doppler shifted (AW) Allow: $\frac{\Delta f}{f} = \frac{2v\cos\theta}{c}$ where <i>c</i> is the speed of ultrasound and <i>v</i> is the speed of blood; no need to define the angle
			Total	10	

Question		on	Answer	Marks	Guidance
4	(a)		Any <u>two</u> from: (X-rays) are EM waves Travel at speed of light $/ 3 \times 10^8 \text{ ms}^{-1}$ (in a vacuum) Travel in a vacuum / empty space Transverse waves Can cause ionisation Have wavelength of about 10^{-10} m (X-rays are high energy) photons (AW)	B1×2	Allow : reference to diffraction / interference / refraction / reflection / polarisation for 1 mark
	(b)		 (X-ray) <u>photon</u> interacts with an (orbital) <u>electron</u> The (scattered) photon has a longer wavelength / lower frequency / lower energy AND The electron is ejected (from the atom at high speed) 	B1 B1	Allow: 'X-rays' instead of 'photons' for the second B1 mark
	(c)	(i)	Initial / original / incident intensity	B1	Allow: Initial / original / incident power per (unit) area
		(ii)	$0.5 = e^{-(3.3x)}$ ln(0.5) = - 3.3x x = ln(0.5)/(-3.3) x = 0.21 (cm)	C1 C1 A1	Allow : $ln(2) = 3.3x$ Allow : 2 marks for 2.1×10^{n} ; $n \neq -1$ (POT error)
	(d)		A contrast material has large attenuation coefficient / large atomic number / large Z (and hence easily absorbs X-rays) Idea of revealing tissue	B1 B1	
			Total	10	

Question		on	Answer	Marks	Guidance
5	(a)		 Any <u>seven from:</u> Protons / nuclei have spin / behave like (tiny) magnets Protons / nuclei precess about the magnetic field (provided by the strong electromagnet) Transmitting coils provide (pulses of) radio waves of frequency equal to the Larmor frequency The protons / nuclei absorb energy / radio waves / resonate and flip into a higher energy state When protons / nuclei flip back to a lower energy state they emit (photons of) radio waves The relaxation time (of the protons/nuclei) depends on the (surrounding) tissues The gradient coils alter the magnetic flux density (through the body) The Larmor frequency (of the protons / nuclei) varies through the body The computer (processes all the signals from the receiving coils and) generates the image(s) 	B1 × 7	Show annotation on Scoris Not: Atoms / particles for nuclei /protons. Allow: The protons / nuclei absorb energy / radio waves / resonate and get excited Allow: When protons / nuclei relax they emit (photons of) radio waves
	(b)		 Ay two from: PET scan: uses radioactive substance / uses positron- emitting substance / uses F(-18) / mention of gamma rays / mention of gamma photons PET scan reveal the 'function' of the brain (AW) MRI scan show variation in tissues (in the brain) (AW) 	B1×2	Allow: MRI scan: no radioactive substance is required / mention of radio waves Allow: PET scans are used to diagnose dyslexia / Alzheimer (disease)
			Total	9	